
Math 4200
Monday October 19
2.5  maximum principles for analytic functions and harmonic functions; conformal 
diffeomorphisms of the disk via the maximum modulus principle.

Announcements: 

Warm-up exercise:



On Friday we stated the maximum modulus principle for analytic functions, and 
illustrated with an example.

Theorem  (Maximum modulus principle).  Let A  be an open, connected, bounded 
set.  Let f : A  be analytic, f : A

_
 continuous.  

(i)  Then

maxz A
_ f z   =  maxz  A f z M ,

i.e. the maximum modulus of f z  occurs on the boundary of A .  

(ii)  Furthermore if z0 A  with f z0 = M , then f  is a constant function on A .

proof of maximum modulus principle:  Since  A
_

 is compact and f | is continuous on A
_

 
we know by the extreme value theorem from analysis that f  attains its maximum 
value, which we denote by M . 

To prove both parts of the theorem at once, it suffices to show that if there is any point  
z0 A  with f z0 = M , then f  is a constant function.  (Because in this case the 
maximum value is also attained on the boundary, so part (i) holds as well.  And if there 
is no such interior point, then the maximum values only occur on the boundary, so (i) 
holds.

So assume z0 A  with f z0 = M .  Define the nonempty set
B z A   f z = M

We will show with the mean value property that B  must be all of A .  And then we will 
show that f z = M  on all of A  implies that f z  itself is constant.



B z A   f z = M
(1)  B  is closed in A  because f  is continuous:

(2)  B  is open (in A ):    Let z1 B, D z1, A .  We'll show f z = M  

z D z1, , so that  D z1, B.   Each such z in the disk is of the form z = z1

r ei  with r .  But for 0  r  we have the mean value property

f z1 = 1
2 

0

2 

f z1 r ei  d .

Use this and f z1 = M  to show each f z1 r ei = M  as well:



B z A   f z = M

Since B  is nonempty as well as open and closed in A  it must be all of A  since A  is 
connected.  (Otherwise B, A B  would be a disconnection of A  into two nonempty 
subsets, each of which were open and closed in A .)

Thus f z = M  on A , and by continuity on A
_

 as well.   We complete the proof of the 
maximum principle by showing that actually f z  itself is constant on A , hence on A

_
:  

Write f = u i v and so we have
u2 v2 M2

If M = 0 then f 0 on A  and we are done.  Otherwise M 0 and taking x and 
y partials of the identity above we get  the system for each z A :

ux vx

uy vy

u
v

=
0
0

.

Since M 0, u, v 0, 0  at any point. Thus the determinant of the matrix is 
identically zero on A .  But by CR the determinant of the matrix is

uxvy uyvx = ux
2 uy

2 = vy
2 vx

2 .
Thus the gradients of u, v are identically zero on the connected open set A , so u and v 
are each constants on A  and f  is as well.   Thus if f z  attains its maximum value at 
an interior point of A , f  is a constant function.



One can use the mean value property for harmonic functions to prove the maximum and 
minimum modulus theorems for harmonic functions:

Theorem  (Maximum and minimum principle for harmonic functions).  Let A 2  be 
an open, connected, bounded set.  Let u : A  be harmonic and C2 , u : A

_
 

continuous.  Then

max x, y A
_ u x, y  =  max x, y  A u x, y M ,

min x, y A
_ u x, y  =  min x, y  A u x, y m,

Furthermore if x0, y0 A  with u x0, y0 = M  or u x0, y0 = m, then u is a 
constant function on A .

Example:  u x, y = x2 y2  is harmonic.  Where are the maximum and minimum 
values of u attained, on D

_
0; 2  ?



Maximum and minimum principle proof:  The maximum principle implies the minimum 
principle, since the minimum principle for harmonic u x, y  is equivalent to the 
maximum principle for  the harmonic v x, y u x, y .  In other words, minimum 
values for u x, y  correspond to maximum values for u x, y , so you can characterize
where they occur via the maximum principle for the function u x, y .  (See 
homework.)

So we'll focus on the maximum principle.  One can mimic the proof we used for the 
analytic function maximum principle, using the mean value property for harmonic 
functions in place of the one for analytic functions:

The maximum value M  must occur either in the open domain A  or on the boundary.  
The Theorem follows if we show that whenever there is an interior point x0, y0 A  
with u x0, y0 = M , then actually u x, y = M x, y A .  

So assume x0, y0 A  with u x0, y0 = M.    As before, Let 
B x, y A   u x, y = M .

Because u is continuous, B  is closed in A .  If we can show B  is open, then B = A  
because A  is connected and B  is not empty.

Let D z1; A  and show D z1; B  by using the mean value property for each 
0 r :

u x1, y1 = 1
2 

0

2 

u x1 r cos , y1 r sin  d .



Suprising application of the maximum modulus principle, related to section 5.2 and the
hyperbolic plane in geometry.  This also yields a different proof of the Poisson integral 
formula for harmonic functions than the text's, in the current section 2.5, which I may 
show you later.

Question.  Consider D = D 0; 1 .  What are all possible invertible conformal 
transformations f : D

_
D
_

 ?  In other words, so that f, f 1  are each analytic bijections 
of the closed unit disk.

Step 1  What if we require f 0 = 0?  Then consider 

h z =
f z

z z 0

f 0 z = 0
Since h is analytic in D

_
 except at the point z = 0 where it is continuous, the modified 

rectangle lemma and Morera's Theorem prove that h is analytic in the closed disk (i.e. in

a slightly larger open disk).  The same reasoning applies to 1
h z .    Use the maximum 

modulus principle for h z  and for 1
h z  to show that f z = ei z are the only 

conformal diffeomorphisms in this case.  Not very many!!!



Step 2  For z0 D 0; 1 , consider the Mobius transformation (see p. 340, Chapter 5.2; 
also a first-week homework problem):

a)  g z
z0 z

1  z0
_

 z .

Show g z  is conformal in the closed unit disk:  g z =
1 z0

2

1  z0
_

z 2  exists and is non 

zero in the closed unit disk.
Notice that g 0 = z0 .  Show that g transforms the unit circle to the unit circle, so that 
by the maximum modulus principle, g z 1 z D 0; 1 .

b)  Denote the Mobius transform g in part (a) by gz
0
 because the image of the origin is 

z0 .  Solve the equation 
z0  z

1  z0
_

 z = w

for w to see that the inverse function to gz
0

z  is given by the related Mobius 

transformation 

g z
0

w =
z0 w

1  z0
_

w .

Combining (a), (b) we see that the gz
0

z  are conformal diffeomorphisms of the unit 

disk.



Here's a Maple picture of how g.5 z  transforms circles concentric to the origin, and 
rays through the origin.  You'll notice that the images of the circles are circles, and the 
images of the rays are circles (or rays) that hit the unit circle orthogonally.  This is not 
an accident.  It turns out that these Mobius transformations gz

0
are the isometries of the

hyperbolic disk, in hypberbolic geometry.  (Another circle of ideas for a potential class 
project.)  Notice that g.5 0 = .5.  Its inverse function is g .5 z  which maps .5 back to
the origin, and maps the origin to .5!



Step 3:  Combine steps 1 and 2, to show that for z0 D 0; 1  every conformal 
diffeomorphism of the unit disk with 

f 0 = z0
can be written as

f z = gz0
ei z

for some choice of  and the Mobius transformations gz
0

z  with z0 D 0; 1 , from 

the previous page,

gz
0

z
z0 z

1  z0
_

 z
.

Not very many!



Math 4200-001
Week 8 concepts and homework

2.4-2.5
Due Friday October 23 at 11:59 p.m.

2.5     2, 5, 7, 8, 10, 15, 18. 
3.1     6, 7.  (To get you thinking about sequences and series, for Chapter 3.)


